629 research outputs found

    Television noise-reduction device

    Get PDF
    System greatly improves signal-to-noise ratio with little or no loss in picture resolution. By storage of luminance component, which is summed with chrominance component, system performs mathematical integration of basically-repetitive television signals. Integration of signals over interval of their repetition causes little change in original signals and eliminates random noise

    Television noise reduction device

    Get PDF
    A noise reduction system that divides the color video signal into its luminance and chrominance components is reported. The luminance component of a given frame is summed with the luminance component of at least one preceding frame which was stored on a disc recorder. The summation is carried out so as to achieve a signal amplitude equivalent to that of the original signal. The averaged luminance signal is then recombined with the chrominance signal to achieve a noise-reduced television signal

    Path sampling for lifetimes of metastable magnetic skyrmions and direct comparison with Kramers' method

    Get PDF
    We perform a direct comparison between Kramers' method in many dimensions -- i.e., Langer's theory -- adapted to magnetic spin systems, and a path sampling method in the form of forward flux sampling, as a means to compute collapse rates of metastable magnetic skyrmions. We show that a good agreement is obtained between the two methods. We report variations of the attempt frequency associated with skyrmion collapse by three to four orders of magnitude when varying the applied magnetic field by 5%\% of the exchange strength, which confirms the existence of a strong entropic contribution to the lifetime of skyrmions. This demonstrates that in complex systems, the knowledge of the rate prefactor, in addition to the internal energy barrier, is essential in order to properly estimate a lifetime.Comment: 5 pages, 5 figures (main text), 8 pages including supplemental materia

    Exchange anisotropy pinning of a standing spin wave mode

    Full text link
    Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin wave thickness mode in Ni(80)Fe(20)/Ir(25)Mn(75) exchange biased bilayers was studied for a range of IrMn thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique `fingerprint' of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet/antiferromagnet interface anisotropy. Thermal effects are studied for ultra-thin antiferromagnetic Ir(25)Mn(75) thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.Comment: 7 pages, 7 figure

    Focus on artificial frustrated systems

    Get PDF
    Frustration in physics is the inability of a system to simultaneously satisfy all the competing pairwise interactions within it. The past decade has seen an explosion of activity involving engineering frustration in artificial systems built using nanotechnology. The most common are the artificial spin ices that comprise arrays of nanomagnets with competing magnetostatic interactions. As well as being physical embodiments of idealized statistical mechanical models in which properties can be tuned by design, artificial spin ices can be studied using magnetic microscopy, allowing all the details of the microstates of these systems to be interrogated, both in equilibrium and when perturbed away from it. This 'focus on' collection brings together reports on the latest results from leading groups around the globe in this fascinating and fast-moving field

    A network model for field and quenched disorder effects in artificial spin ice

    Full text link
    We have performed a systematic study of the effects of field strength and quenched disorder on the driven dynamics of square artificial spin ice. We construct a network representation of the configurational phase space, where nodes represent the microscopic configurations and a directed link between node i and node j means that the field may induce a transition between the corresponding configurations. In this way, we are able to quantitatively describe how the field and the disorder affect the connectedness of states and the reversibility of dynamics. In particular, we have shown that for optimal field strengths, a substantial fraction of all states can be accessed using external driving fields, and this fraction is increased by disorder. We discuss how this relates to control and potential information storage applications for artificial spin ices

    Surface and bulk polaritons in a linear magnetoelectric multiferroic with canted spins: Transverse Electric polarisation

    Full text link
    Some magnetoelectric multiferroics have a canted spin structure that can be described by a Dzyaloshinkii-Moriya coupling. We calculate properties and features expected for surface and bulk magnon polaritons in such media with a linear magnetoelectric interaction for the case of transverse electric polarisation. The dielectric polarisation and magnetisation of weak ferromagnetism are constrained to lie in the plane parallel to the surface. We examine a geometry with the polarisation oriented in the film plane and present numerical results for the transverse electric polarisation. Particular attention is given to non-reciprocal surface modes, which exist in frequency between two bulk bands, and show how these modes can be modified by external magnetic field. Results for attenuated total reflection are presented, and discussed in relation to nonreciprocity. Example results are calculated for the canted antiferromagnet BaMnF4.Comment: 14 pages, 6 figure

    Spin wave frequency shifts in exchange coupled ferromagnet/antiferromagnet structures: Application to Co/CoO

    Get PDF
    Copyright © 1997 American Institute of PhysicsCo/CoO structures have been studied almost exclusively through measurements of hysteresis, and display an enhanced and strongly temperature dependent effective in-plane anisotropy. A recent experimental study demonstrated an alternate way of investigating effects related to the coupling across the interface by measuring frequencies of long wavelength spin waves associated with the Co film. A large increase in frequency of the low frequency spin wave in the Co was observed as the temperature was lowered through the Neél temperature of CoO. We show how these frequency shifts can be understood as an effective interface anisotropy introduced by strong exchange coupling across the Co/CoO interface. This means that spin waves in the Co also include energy contributions from the larger anisotropies experienced by spins in the CoO. The theory is presented and discussed for the Co/CoO interface and other structures

    Probing the interface magnetism in the FeMn/NiFe exchange bias system using magnetic second harmonic generation

    Full text link
    Second harmonic generation magneto-optic Kerr effect (SHMOKE) experiments, sensitive to buried interfaces, were performed on a polycrystalline NiFe/FeMn bilayer in which areas with different exchange bias fields were prepared using 5 KeV He ion irradiation. Both reversible and irreversible uncompensated spins are found in the antiferromagnetic layer close to the interface with the ferromagnetic layer. The SHMOKE hysteresis loop shows the same exchange bias field as obtained from standard magnetometry. We demonstrate that the exchange bias effect is controlled by pinned uncompensated spins in the antiferromagnetic layer.Comment: submitted to Phys. Rev. Let
    • …
    corecore